MOVEMENT OF GAS BUBBLES IN A LIQUID LAYER
IN THE PRESENCE OF DIFFUSION AND CHEMICAL
REACTIONS

L. A, Galin and O, M. Churmaev

The problem of a bubbling reactor, in which gas and liquid are mixed by the passage of
bubbles of gas through a liquid layer, is discussed, We give the results of a numerical
solution of the system of equations describing the processes occurring in the reactor in
the case where there are no chemical reactions, and also in the case where chemical
reactions take place at constant temperature.

The bubbles are formed by gas jets which issue from special nozzles mounted in the bottom of the re-
actor. The gas jet issuing from the nozzle breaks up into separate bubbles, which rise under the action of
buoyancy forces. The bubbling process was investigated experimentally in [1-3].

For the total diffusion flux from a bubble the formula [4]
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is usually used, Here I is the total diffusion flug, A is a constant which is experimentally determined, D is
the diffusion coefficient, u; is the speed of ascent of the bubble, [ is the characteristic dimension of the
hubble, and ¢, is the saturation concentration.

The values usually used for small (undeformed) bubbles are A = V7 /3, | = 2a ,where ¢ is the bubble
radius. It has been established that the speed of ascent of a bubble depends significantly on the Reynolds
number wa /v, where v is the kinematic viscosity of the liquid.

1. We consider the problem of solution of gas bubbles in a liquid. Let h be the depth of the layer of
liquid in the reactor and u, the speed of ascent of the bubble; the x axis is directed upward along the reactor
axis,

We assume that ¢; — the concentration of dissolved substance in the bubble — is small, the bubbles are
all of the same size and do not break up into smaller bubbles nor unite to form larger ones. The speed of
ascent of the bubbles will then be constant [4]. We assume that the Dalton and Henry laws hold for a bubble.
Then the concentration of dissolved substance at the gas-liquid interface and c; will be connected by the re-
lationship c,° = Pc,, where  is a constant, and ¢,° is the saturation concentration,

Let t be the time, u be the specific mass transfer coefficient for unit volume of the mixture (which
depends on the number of bubbles per unit volume of the mixture, their size, ete.), and ¢, be the concentra-
tion of dissolved substance in the liquid. The process occurring in the reactor can be described by the fol-
lowing system of equations:

Bey ey Be: 8%, -
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with initial and boundary conditions
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Here D, ig the turbulent diffusion coefficient, and c¢,° is the initial concentration of dissolved substance
in the bubble [5-8].

We assume that the medium consists of a liquid and discrete bubbles, No diffusion takes place be-
tween the bubbles. The first equation of system (1.1), which describes the change in concentration ¢;, con-
tains only a convective term (u; is the speed of the bubble relative to the liquid). The second equation of
system (1.1) corresponds to the diffusion process (there is no convective term, the liquid is stationary,

D, 8¢,/ 9x? is the diffusion term).

The terms on the right side of the equations of systems (1.1) are the source intensities, which are
proportional to the difference in saturation concentration at the bubble boundary and the concentration of
dissolved substance in the liquid.

We introduce new functions and dimensionless variables

-~ uad - cL [
t'_:Tj &=, u=~c—1-°—:, v:a;'
System (1.1) and conditions (1.2) in dimensionless variables take the form

du ou v, %
2 T =1 {u—v) 2 Doz =10u—72) 1.3)
ufr, 0y=0, #(z, 0)=0, u(0,5) =1
v v
(=0 [E]=o0

The strokes above the variables t, x, and D,, as in all that follows, are omitted.

(1.4)

Here Dy, v, A are dimensionless coefficients, corresponding to the diffusion coefficient, mass trans-
fer coefficient, and Henry constant,

System (1.3) with conditions (1.4) was solved numerically on an electronic digital computer.

The system of equations (1.3) was replaced by difference equations,

In the semistrip x€[0, 1],t = 0, arectangularnet x=jAx,t=iAt (j=0,1,2,...,ni=0,1, .. )
was constructed.

Since at the initial instant the boundary and initial conditions are inconsistent, there will be a solution
in the form of a jump of concentration u.

The position of the jump is given by the characteristic of the first equation of system (1.3). The
equation of the characteristic is x —t = 0. Hence, for the solution of the first equation of system (1.3) we
chose an explicit three-point scheme (corner), stable at r = At/Ax = 1 and having first order of accuracy,
Here we used the "through" count method. On the right of the difference equation u is taken on the upper
layer to avoid a "surge," which is physically unreal.

118



The second equation of system (1.3) was approximated by a "weighted" six-point scheme, Initially,
owing to the inconsistency of the boundary conditions, we regarded the weight ¢ as unity and used two-
point approximations of the boundary conditions, but subsequently, after calculation of the first ¢ layers in
time, we assumed 6 equal to a half and took more accurate three-point approximations of the boundary con-
ditions,

When the concentration (u) front reached x = 1, we used an absolutely stable four-point scheme, with
second order of accuracy [9-11], to calculate the first equation of the system.

The calculations were performed for four combinations of values of the parameters D,, v, and A, viz,,
1(10, 1.5, 0.5), £ (10, 1.5, 0.75), 3 (4, 1.5, 0.5), 4 (10, 1.0, 0.5) |

The steps for the variables were taken as Ax = At = 0.02. A further reduction of the steps had prac-
tically no effect on the results,

We give the values of u and v in relation to x for t = 0.8 and in relation to t for x = 0.5 for the first
variant

t=0.8

z=0 0.40 0.78 0.80 1
w=1.000000 0.788520 0.603078 0.049353 0,047911
v=0.139946 0.138143 0.134628 0.134443 0

z=0.5

=0 0.40 1.0 2. 3.
u=20.000000 0.007077 0.769043 0.903137 0.938 426
»=10.000000 0.040614 0.193069 0.3 0

The distributions of the dimensionless concentrations u and v over the length of the reactor are shown
in Fig. 1 for four variants at time t = 0.8. Curves 1, 2, 3, 4 show the distribution of u; the curves with the
dashed numbers give the distribution of v,

The distributions of u and v for four variants in the reactor cross section x = 0.5 in relation to time

are illustrated in Fig. 2, Curves 1, 2, 3, 4 show the distribution of u; the curves with the dashed numbers
give the distribution of v.

2. We consider the case where a substance dissolved from the gas bubble reacts with a substance
present in the liquid. We assume, as before, that the Dalton and Henry laws hold. We regard the process
as isothermic, We denote the concentration of substance in the liquid which reacts with the substance dis-
solved from the bubbles by c;, the rate constant of the chemical reaction by k, the stoichiometric coeffi-
cient by v, the exponents characterizing the order of the reaction by ¢, and a 5, and the coefficient of
turbulent diffusion of the substance reacting with the substance dissolved from the gas bubble by Dy [12, 13].

Thus, in the case of bubbling with a chemical reaction an equation for c¢q has to be added to the system
(1.1), and a term k01 102 2, obtained from the laws of chemical kinetics, has to be added to the right side of
the second equation of system (1.1).

We have to write the corresponding boundary and initial conditions for Cs.

The system of equations in this case in dimensionless variables will have the form

ou
at "l_ ax - (}"u - U)

dv %y o
Ty Dgawg-—'r(?xu»«v)—kv‘w’
(2.1}
dw %y
ot — D35 Dt == vhp®t %
The initial conditions are
w{m, 0)=0 20 =0 w0 =u, (2.2)
and the boundary conditions w08 =1, [0)0s]_y=0, [dvjdel,_, =
[Bwjdx],_, =0, [Bw/dz],_ =0 (2.3)
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Here D, and D3 are dimensionless diffusion coefficients; k, ¢, and A
are dimensionless coefficients corresponding to the rate constant of the
chemical reaction, the mass transfer coefficient, and the Henry constant;
w= cg/cy.

A difference scheme [14] was used to solve system (2.1) with condi-
tions (2.2) and (2.3).

In the semistrip x€[0, 1], t = 0, a main rectangular net x = jAx, t =
iAt, and an auxiliary net x =jAx, t=3iAt (j=0,1,2, ...,n;i=0,1,...)
were constructed.

The first equation of system (2.1) was solved in exactly the same way
as (1.3).

Since the boundary conditions are inconsistent, we used a two-point
approximation of the boundary conditions for the first g layers and then a
more accurate three-point approximation for subsequent layers.

We took equal steps for the time and space variables to avoid
"smearing" of the concentration front (u). The calculations were per-
formed for At and Ax equal to 0.02. To check the accuracy we calculated
some variants with steps At = Ax = 0.01, and @, and a, taken as unity
which corresponds to a second-order reaction,

Some variants were calculated by iteration schemes [11]. These
calculations gave results which were practically the same as the calcula-
tions by the scheme of [14], but the iteration schemes required more
machine time.

The calculations were performed for two combinations of values of the parameters k, v, A, D,, and
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110, 1.5, 0.8, 10,10), 2 (100, 1.5, 0.8, 10, 10)

We give the values of u, v, and w in relation to x for t = 0.2 and in relation to t for x = 0.4 for the
first variant:

t=0.2

z=0 0.18 0.20 1.0
u'=1.000000 0.661378 0(.001397 0.000739%
»=0.018382 0.017498 0.016816 0,011 214
w=10.494980 0.494996 0.495015 0.495282
z=0.,4

t=0 0.4 1.0 2.0 |
u==0,000000 0.008216 0.670496 0.756894
v =0.000000 0.041978 0.4133630 0.343744
w=0.500000 0.468916 0.282363 0.028475

The distributions of the dimensionless concentrations u, v, and w in relation to x for t = 0.2 are
shown for two variants in Fig. 3, Curves 1, 2, and 3 show the distributions of u, v, and w, respectively, for
the first variant; the curves for the second variant are denoted by dashed numbers. Figure 4 shows the
distribution curves of u, v, and w in relation to time for x =0.4.

Curves 1, 2, and 3 show the distributions of u, v, and w, respectively, for the first variant; the curves
for the second variant are denoted by dashed numbers.
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